Kepler's Laws
Kepler's laws of planetary motion
http://astro.unl.edu/naap/ssm/animations/ptolemaic.swf
http://astro.unl.edu/naap/pos/animations/kepler.swf
Johannes Kepler, 1571-1630
Note that these laws apply equally well to all orbiting bodies (moons, satellites, comets, etc.)
1. Planets take elliptical orbits, with the Sun at one focus. (If we were talking about satellites, the central gravitating body, such as the Earth, would be at one focus.) Nothing is at the other focus. Recall that a circle is the special case of the ellipse, wherein the two focal points are coincident. Some bodies, such as the Moon, take nearly circular orbits - that is, the eccentricity is very small.
2. The Area Law. Planets "sweep out" equal areas in equal times. See the applets for pictorial clarification. This means that in any 30 day period, a planet will sweep out a sector of space - the area of this sector is the same, regardless of the 30 day period. A major result of this is that the planet travels fastest when near the Sun.
3. The Harmonic Law. Consider the semi-major axis of a planet's orbit around the Sun - that's half the longest diameter of its orbit. This distance (a) is proportional to the amount of time to go around the Sun in a very peculiar fashion:
a^3 = T^2
That is to say, the semi-major axis CUBED (to the third power) is equal to the period (time) SQUARED. This assumes that we choose convenient units:
- the unit of a is the Astronomical Unit (AU), equal to the semi-major axis of Earth's orbit (approximately the average distance between Earth and Sun). This is around 150 million km or around 93 million miles
- the unit of time is the (Earth) year
The image below calls period P (rather than T), but the meaning is the same:
Example problem: Consider an asteroid with a semi-major axis of orbit of 4 AU. We can quickly calculate that its period of orbit is 8 years (since 4 cubed equals 8 squared).
Likewise for Pluto: a = 40 AU. T works out to be around 250 years.
The applets I referenced::
http://www.physics.sjsu.edu/tomley/kepler.html
http://www.physics.sjsu.edu/tomley/Kepler12.html
for Kepler's laws, primarily the 2nd law
http://www.astro.utoronto.ca/~zhu/ast210/geocentric.html
for our discussion on geocentrism and how retrograde motion appears within this conceptual framework
Cool:
http://galileo.phys.virginia.edu/classes/109N/more_stuff/flashlets/kepler6.htm
http://astro.unl.edu/naap/ssm/animations/ptolemaic.swf
http://astro.unl.edu/naap/pos/animations/kepler.swf
Johannes Kepler, 1571-1630
1. Planets take elliptical orbits, with the Sun at one focus. (If we were talking about satellites, the central gravitating body, such as the Earth, would be at one focus.) Nothing is at the other focus. Recall that a circle is the special case of the ellipse, wherein the two focal points are coincident. Some bodies, such as the Moon, take nearly circular orbits - that is, the eccentricity is very small.
2. The Area Law. Planets "sweep out" equal areas in equal times. See the applets for pictorial clarification. This means that in any 30 day period, a planet will sweep out a sector of space - the area of this sector is the same, regardless of the 30 day period. A major result of this is that the planet travels fastest when near the Sun.
3. The Harmonic Law. Consider the semi-major axis of a planet's orbit around the Sun - that's half the longest diameter of its orbit. This distance (a) is proportional to the amount of time to go around the Sun in a very peculiar fashion:
a^3 = T^2
That is to say, the semi-major axis CUBED (to the third power) is equal to the period (time) SQUARED. This assumes that we choose convenient units:
- the unit of a is the Astronomical Unit (AU), equal to the semi-major axis of Earth's orbit (approximately the average distance between Earth and Sun). This is around 150 million km or around 93 million miles
- the unit of time is the (Earth) year
The image below calls period P (rather than T), but the meaning is the same:
Example problem: Consider an asteroid with a semi-major axis of orbit of 4 AU. We can quickly calculate that its period of orbit is 8 years (since 4 cubed equals 8 squared).
Likewise for Pluto: a = 40 AU. T works out to be around 250 years.
The applets I referenced::
http://www.physics.sjsu.edu/tomley/kepler.html
http://www.physics.sjsu.edu/tomley/Kepler12.html
for Kepler's laws, primarily the 2nd law
http://www.astro.utoronto.ca/~zhu/ast210/geocentric.html
for our discussion on geocentrism and how retrograde motion appears within this conceptual framework
Cool:
http://galileo.phys.virginia.edu/classes/109N/more_stuff/flashlets/kepler6.htm
No comments:
Post a Comment